Biofuels. Sequential valorization of waste coffee grounds to Biodiesel, Bioethanol, and solid fuel.

This book presents the evolution of biodiesel technologies along with government policies of major biodiesel producing countries with their backgrounds, impacts, changes, and other energy forms. Biodiesel feedstock and biodiesel production technologies including green algae and methanol are presented as separate topics. Changes in the feedstock types and the corresponding technologies are presented, and their impacts on the biodiesel policies are explained. The life cycle analysis (LCA) in research and policy design of biodiesel is discussed and the findings are given for different feedstocks in terms of greenhouse gases, energy, and other impact categories.

Biodiesel Science and Technology

"Biofuels" provides state-of-the-art information on the status of biofuel production and related aspects. It includes a detailed overview of the alternative energy field and the role of biofuels as new energy sources, and gives a detailed account of the production of biodiesel from non-conventional bio-feedstocks such as algae and vegetable oils.

Storage Stability of Fuels
This book offers reviews of state-of-the-art conversion techniques for biofuels. It focuses on the latest development for the production of liquid and gaseous biofuels that should be of interest to the chemical scientists and technologists.

Biodiesel Production

Biodiesel production is a rapidly advancing field worldwide, with biodiesel fuel increasingly being used in compression ignition (diesel) engines. Biodiesel has been extensively studied and utilised in developed countries, and it is increasingly being introduced in developing countries, especially in regions with high potential for sustainable biodiesel production. Initial sections systematically review feedstock resources and vegetable oil formulations, including the economics of vegetable oil conversion to diesel fuel, with additional coverage of emerging energy crops for biodiesel production. Further sections review the transesterification process, including chemical (catalysis) and biochemical (biocatalysis) processes, with extended coverage of industrial process technology and control methods, and standards for biodiesel fuel quality assurance. Final chapters cover the sustainability, performance and environmental issues of biodiesel production, as well as routes to improve glycerol by-product usage and the development of next-generation products. Biodiesel science and technology: From soil to oil provides a comprehensive reference to fuel engineers, researchers and academics on the technological developments involved in improving biodiesel quality and production capacity that are crucial to the future of the industry. Evaluates biodiesel as a renewable energy source and documents global biodiesel development. The outlook for biodiesel science and technology is presented exploring the challenges faced by the global diesel industry. Reviews feedstock resources and vegetable oil formation including emerging crops and the agronomic potential of underexploited oil crops.

Liquid, Gaseous and Solid Biofuels

Traditional agriculture and emerging biofuels technology produce a number of wastes and by-products, ranging from corn fiber and glycerin to animal manure, that have the potential to serve as the basis for additional sources of bioenergy that includes both liquid biofuels and biogas. Biofuels from Agricultural Wastes and Byproducts is the first book to focus solely on the production of biofuels primarily from agricultural waste and by-products. The book is divided roughly into two sections. The first section looks at liquid biofuel production from agricultural byproducts, densification of agricultural residues, and the delivery from farm to processing plant of waste and byproducts for use in biofuel production. The second section focuses on anaerobic digestion of food and animal wastes, microbial diversity, molecular and biochemical aspects of methanogenesis. Together, these sections solidify Biofuels from Agricultural Wastes and Byproducts as a definitive source of information on the use of agricultural waste and by-products in biofuel production.

Production of Biofuels and Chemicals with Microwave

In the United States, we have come to depend on plentiful and inexpensive energy...
to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation’s consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.

Whole-cell Biocatalysts for Producing Biodiesel from Waste Greases

From the Fryer to the Fuel Tank

Discusses the American dependence on imported fossil fuel and proposes a solution in the form of biodiesel engines.

Monitoring Polymerization Reactions

Offers new strategies to optimize polymer reactions. With contributions from leading macromolecular scientists and engineers, this book provides a practical guide to polymerization monitoring. It enables laboratory researchers to optimize polymer reactions by providing them with a better understanding of the underlying reaction kinetics and mechanisms. Moreover, it opens the door to improved industrial-scale reactions, including enhanced product quality and reduced harmful emissions. Monitoring Polymerization Reactions begins with a review of the basic elements of polymer reactions and their kinetics, including an overview of stimuli-responsive polymers. Next, it explains why certain polymer and reaction characteristics need to be monitored. The book then explores a variety of practical topics, including: Principles and applications of important polymer characterization tools, such as light scattering, gel permeation chromatography, calorimetry, rheology, and spectroscopy. Automatic continuous online monitoring of polymerization (ACOMP) reactions, a flexible platform that enables characterization tools to be employed simultaneously during reactions in order to obtain a complete record of multiple reaction features. Modeling of polymerization reactions and numerical approaches. Applications that optimize the manufacture of industrially
important polymers Throughout the book, the authors provide step-by-step strategies for implementation. In addition, ample use of case studies helps readers understand the benefits of various monitoring strategies and approaches, enabling them to choose the best one to match their needs. As new stimuli-responsive and "intelligent" polymers continue to be developed, the ability to monitor reactions will become increasingly important. With this book as their guide, polymer scientists and engineers can take full advantage of the latest monitoring strategies to optimize reactions in both the lab and the manufacturing plant.

Agricultural Waste and Residues

Biodiesel is one of the main biofuels capable of substituting fossil fuel usage in compression ignition vehicles, and is used in a variety of fuel blends worldwide. First-generation biodiesel has been used in national markets for some time, with fuel quality standards in place for this purpose. There remain, however, several restrictions to sustainable and long term market development, which is influenced by many factors, including food vs. fuel pressures. The development of new generations of biodiesel, aimed at more sustainable and effective feedstock utilisation alongside improved production efficiency and fuel quality, is critical to the future both of this industry and of the continuing use of biodiesel fuels in transportation. This book provides a timely reference on the advances in the development of biodiesel fuels, production processes and technologies. Part one reviews the life cycle sustainability assessment and socio-economic and environmental policy issues associated with advanced biodiesel production, as well as feedstocks and fuel quality standards. This coverage is extended in Part two, with chapters focussing on the development of methods and catalysts essential to the improvement and optimisation of biodiesel production processes and technologies. With its distinguished editors and international team of contributors, Advances in biodiesel production a standard reference for chemical, biochemical and industrial process engineers, as well as scientists and researchers in this important field. Provides a timely reference on the advances in the development of biodiesel fuels, production processes and technologies Reviews the life cycle sustainability assessment and socio-economic and environmental policy issues associated with advanced biodiesel production, as well as feedstocks and fuel quality standards Discusses the development of methods and catalysts essential to the improvement and optimisation of biodiesel production processes and technologies

Solvent Effect on the Enzymatic Production of Biodiesel from Waste Animal Fat

Biofuel and bioenergy produced from biowastes and biomass is a clean energy source which can be produced renewably. The 21 chapters of this book provide state-of-the-art reviews, current research, and technology developments with respect to 1st, 2nd, and 3rd generation biofuels and bioenergy. The book focuses on the biological/ biochemical pathway, as this option has been reported to be the most cost-effective method for biofuel/bioenergy production. The opening chapter covers the overview of the current status of biofuel and bioenergy production. The rest of the chapters are grouped into seven categories; they cover biomethane
production, microbial fuel cells, feedstock production, preprocessing, biomass pretreatment, enzyme hydrolysis, and syngas fermentation. Algal processes for biofuel production, biobutanol production, bioreactor systems, and value-added processing of biofuel residues are included. This book addresses life cycle analyses (LCA) of 1st and 2nd generation biofuels (from corn, soybean, jatropha, and cellulosic biomass) and the emerging applications of nanotechnology in biofuel/bioenergy production. The book is organized in such a way that each preceding chapter builds a foundation for the following one. At the end of each chapter, current research trends and further research needs are outlined. This is one of the first books in this emerging field of biofuel/bioenergy that provides in-depth technical information on the broad topics of biofuel and bioenergy with extensive illustrations, case studies, summary tables, and up-to-date references. This book will be valuable to researchers, instructors, senior undergraduate and graduate students, decision-makers, professionals, and others interested in the field of biofuel/bioenergy.

Handbook of Biofuels Production

Master's Thesis from the year 2014 in the subject Energy Sciences, course: Biofuels, language: English, abstract: In this study, the utilization of waste coffee residue for biodiesel production, its solid byproduct after oil extraction for bioethanol production, as well as the second byproduct after bioethanol production for solid fuel and compost production was investigated. For the study, waste coffee residue sample was collected from TOMOCA PLC, Addis Ababa, Ethiopia. The oil was then extracted using n-hexane and resulted in oil yield of 19.73 %w/w. The biodiesel was obtained by a two-step process, i.e. acid catalyzed esterification followed by base catalyzed transesterification using catalysts sulfuric acid and sodium hydroxide respectively. The conversion, after esterification of waste coffee residue oil in to biodiesel, was about 80.4%. Various parameters that are essential for biodiesel quality were evaluated using the American Standard for Testing Material (ASTM D 6751- 09). The results obtained for kinematic viscosity (5.3 mm2/s), carbon residue (0.033%), flash point (222°C), ash content (0.0123%), water and sediment (0.033%).

Overview of the Feasibility of Biodiesel from Waste/recycled Greases and Animal Fats

Due to their high growth rate, algae, microalgae, and aquatic plants are becoming the most promising photosynthetic organisms for biofuel production. Advances in Biofuel Production: Algae and Aquatic Plants explores current investigations and application of the fields of biofuel production and bioengineering and considers from a global context the evolving processes of algal biofuel production. The book looks at how biomass, specifically sugars, nonedible plant materials, and algae (which are designated first, second, and third fuels respectively) are used in the production of fuel. The feasibility of such projects, current methodologies, and how to optimize biofuel production are presented.

Biodiesel
Abstract: Waste animal fat is a promising feedstock to replace vegetable oil in commercial biodiesel process, however the high content of free fatty acid in waste fat makes it unfeasible to be processed with commercial base-catalytic process. Enzymatic process in supercritical fluid is a promising way to convert waste fat into biodiesel since enzyme can catalyze both esterification of free fatty acid and transesterification of triglyceride while supercritical fluid overcome mass-transfer limitation. However, the glycerol by-product needs to be separated because it might reduce the enzyme activity. Organic solvent can be used to extract the glycerol from the enzyme with destructive effect to the enzyme. Thus, the destructive effect of organic solvent on the ability of modified C. antarctica lipase B to produce biodiesel from the waste fat was investigated. And the reversibility of enzyme was tested by various ways, drowning by organic solvents, and reuse after non-solvent experiment. The activity of enzyme was considerably affected by organic solvents. The solvent-drowning test showed that the yields were similar or higher that non-solvent case. This implies that the solvent itself did not cause the permanent change in enzyme structure to decrease activity. The decrease in yield was observed in the reuse test, which is regarded to be caused by the incomplete removal of products from the first run. Highlights: The organic solvent is indestructible to the activity of the enzyme. The pre-treatment of enzyme using organic solvent increase the yield of biodiesel. The organic solvents with log P value near 0 show the highest enhancement in biodiesel yield.

Transportation Biofuels

Biofuel production from waste biomass is increasingly being focused on due to several advantages of lignocellulosic biomass, such as availability in abundance from several sources, cost-effectiveness, little competition with food sources, etc. This new volume, Sustainable Biofuel and Biomass: Advances and Impacts, provides an abundance of in-depth information on many types of biofuels from lignocellulosic biomass and also describes biomass sources and their availability for biofuel production. This compiled book features 17 chapters that discuss the different aspects of biofuel production from lignocellulosic biomass. Chapters deal with different types lipase-mediated biofuel production, biohydrogen production from lignocellulosic biomass, triacylglycerol biosynthetic pathways in plants for biofuel applications, the industrial prospects of lignocellulosic bioethanol production, biofuel cell production, potential feedstocks availability for bioethanol production, biofuel production from algal biomass, and many other important topics.

Optimization of Biodiesel, Methanol and Methane Production and Air Quality Improvement

Presents the many recent innovations and advancements in the field of biotechnological processes This book tackles the challenges and potential of biotechnological processes for the production of new industrial ingredients, bioactive compounds, biopolymers, energy sources, and compounds with commercial/industrial and economic interest by performing an interface between the developments achieved in the recent worldwide research and its many challenges to the upscale process until the adoption of commercial as well as
Acces PDF Production Of Biodiesel From Waste Cooking Oil And Factors

industrial scale. Bioprocessing for Biomolecules Production examines the current status of the use and limitation of biotechnology in different industrial sectors, prospects for development combined with advances in technology and investment, and intellectual and technical production around worldwide research. It also covers new regulatory bodies, laws and regulations, and more. Chapters look at biological and biotechnological processes in the food, pharmaceutical, and biofuel industries; research and production of microbial PUFAs; organic acids and their potential for industry; second and third generation biofuels; the fermentative production of beta-glucan; and extremophiles for hydrolytic enzymes productions. The book also looks at bioethanol production from fruit and vegetable wastes; bioprocessing of cassava stem to bioethanol using soaking in aqueous ammonia pretreatment; bioprospecting of microbes for bio-hydrogen production; and more. Provides up to date information about the advancements made on the production of important biotechnological ingredients Complete visualization of the general developments of world research around diverse products and ingredients of technological, economic, commercial and social importance Investigates the use and recovery of agro-industrial wastes in biotechnological processes Includes the latest updates from regulatory bodies for commercialization feasibility Offering new products and techniques for the industrial development and diversification of commercial products, Bioprocessing for Biomolecules Production is an important book for graduate students, professionals, and researchers involved in food technology, biotechnology; microbiology, bioengineering, biochemistry, and enzymology.

Biofuels

Biodiesel: A Realistic Fuel Alternative for Diesel Engines describes the production and characterization of biodiesel. The book also presents current experimental research work in the field, including techniques to reduce biodiesel’s high viscosity. Researchers in renewable energy, as well as fuel engineers, will discover a myriad of new ideas and promising possibilities.

Biofuels from Algae

Comprehensive Renewable Energy is the only multi-volume reference work of its type at a time when renewable energy sources are seen increasingly as realistic alternatives to fossil fuels. As the majority of information published for the target audience is currently available via a wide range of journals, seeking relevant information (be that experimental, theoretical, and computational aspects of either a fundamental or applied nature) can be a time-consuming and complicated process. Comprehensive Renewable Energy is arranged according to the most important themes in the field

Production of Biodiesel from Waste Vegetable Oil

A collection of data from various sources on the biochemistry, technology and economics of the production of lipids, presented in a form which allows readers to draw their own conclusions regarding the applicability of this technology to their own circumstances.
Single Cell Oil

This book provides in-depth information on basic and applied aspects of biofuels production from algae. It begins with an introduction to the topic, and follows with the basic scientific aspects of algal cultivation and its use for biofuels production, such as photo bioreactor engineering for microalgae production, open culture systems for biomass production and the economics of biomass production. It provides state-of-the-art information on synthetic biology approaches for algae suitable for biofuels production, followed by algal biomass harvesting, algal oils as fuels, biohydrogen production from algae, formation/production of co-products, and more. The book also covers topics such as metabolic engineering and molecular biology for algae for fuel production, life cycle assessment and scale-up and commercialization. It is highly useful and helps you to plan new research and design new economically viable processes for the production of clean fuels from algae. Covers in a comprehensive but concise way most of the algae biomass conversion technologies currently available Lists all the products produced from algae, i.e. biohydrogen, fuel oils, etc., their properties and potential uses Includes the economics of the various processes and the necessary steps for scaling them up.

Advances in Biofuel Production

Bachelor Thesis from the year 2010 in the subject Engineering - Chemical Engineering, grade: A+, University of Engineering & Technology, Lahore, language: English, comment: A wonderful and outstanding final year project with complete process simulation on Aspen Plus., abstract: This study will use data and will generate a design of a process with a particular capacity and using a flow sheet of this process from an authentic source.. No new experiments have been conducted to prove any theory or hypothesis regarding the said topic.

Biofuels

This book offers an insight into three promising and innovative pathways for the biological production of biodiesel, ethanol and methane.

Catalytic Production of Biodiesel from Waste Cooking Oil Using Calcium Silicate

Biofuels from Agricultural Wastes and Byproducts

Biodiesel Production: Technologies, Challenges, and Future Prospects provides in-depth information on fundamentals, approaches, technologies, source materials and associated socio-economic and political impacts of biodiesel production.

Comprehensive Renewable Energy

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being
developed to address the global increase in energy usage. Research and
development in this field is aimed at improving the quality and environmental
impact of biofuels production, as well as the overall efficiency and output of
biofuels production plants. The book provides a comprehensive and systematic
reference on the range of biomass conversion processes and technology. Key
changes for this second edition include increased coverage of emerging
feedstocks, including microalgae, more emphasis on by-product valorization for
biofuels’ production, additional chapters on emerging biofuel production methods,
and discussion of the emissions associated with biofuel use in engines. The
editorial team is strengthened by the addition of two extra members, and a
number of new contributors have been invited to work with authors from the first
edition to revise existing chapters, thus offering fresh perspectives. Provides
systematic and detailed coverage of the processes and technologies being used for
biofuel production Discusses advanced chemical, biochemical, and thermochemical
biofuels production routes that are fast being developed to address the global
increase in energy usage Reviews the production of both first and second
generation biofuels Addresses integrated biofuel production in biorefineries and
the use of waste materials as feedstocks

Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts

Biofuels

Advances in Feedstock Conversion Technologies for Alternative Fuels and
Bioproducts: New Technologies, Challenges and Opportunities highlights the novel
applications of, and new methodologies for, the advancement of biological,
biochemical, thermochemical and chemical conversion systems that are required
for biofuels production. The book addresses the environmental impact of value
added bio-products and agricultural modernization, along with the risk assessment
of industrial scaling. The book also stresses the urgency in finding creative,
efficient and sustainable solutions for environmentally conscious biofuels, while
underlining pertinent technical, environmental, economic, regulatory and social
issues. Users will find a basis for technology assessments, current research
capability, progress, and advances, as well as the challenges associated with
biofuels at an industrial scale, with insights towards forthcoming developments in
the industry. Presents a thorough overview of new discoveries in biofuels research
and the inherent challenges associated with scale-up Highlights the novel
applications and advancements for biological, biochemical, thermochemical and
chemical conversion systems that are required for biofuels production Evaluates
risk management concerns, addressing the environmental impact of value added
bio-products and agricultural modernization, and the risk assessment of industrial
scaling

World Biodiesel Policies and Production

Conversion of biomass into chemicals and biofuels is an active research and
development area as trends move to replace traditional fossil fuels with renewable
resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Microwave” provides current research advances and prospects in theoretical and practical aspects of microwave irradiation including properties, effects and temperature monitoring, design of chemical reactors, synergistic effects on combining microwave, ultrasound, hydrodynamic cavitation and high-shear mixing into processes, chemical and catalytic conversion of lignin into chemicals, pyrolysis and gasification, syngas production from wastes, platform chemicals, algal biodiesel, cellulose-based nanocomposites, lignocellulosic biomass pretreatment, green chemistry metrics and energy consumption and techno-economic analysis for a catalytic pyrolysis facility that processes pellets into aromatics. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Microwave” and “Ultrasound” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.

Frontiers in Bioenergy and Biofuels

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels’ production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. Provides systematic and detailed coverage of the processes and technologies being used for biofuel production Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage Reviews the production of both first and second
generation biofuels Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks

Sustainable Biofuel and Biomass

This book explores a novel technique for processing biodiesel using lipase immobilization by encapsulation and its physical properties, stability characteristics, and application in stirred tank and re-circulated packed bed immobilized reactors for biodiesel production. The enzymatic processing of biodiesel addresses many of the problems associated with chemical processing. It requires only moderate operating conditions and yields a high-quality product with a high level of conversion and the life cycle assessment of enzymatic biodiesel production has more favourable environmental consequences. The chemical processing problems of waste water treatment are lessened and soap formation is not an issue, meaning that waste oil with higher FFA can be used as the feedstock. The by product glycerol does not require any purification and it can be sold at higher price. However, soluble enzymatic processing is not perfect. It is costly, the enzyme cannot be recycled and its removal from the product is difficult. For these reasons, immobilized enzymatic process has been developed which retains the advantages of the soluble enzymatic process and reuse of the enzyme is possible which decreases the enzyme cost, the biodiesel produced does not contain any enzyme residue and the activity of the enzyme can be increased by immobilization. The drawbacks of the immobilized enzyme process are mass transfer limitation, enzyme leakage, the lack of a versatile commercial immobilized enzyme and some of immobilization methods involve toxic chemicals. To overcome the drawbacks of the immobilized enzyme, an attempt is made to use a degradable biopolymer (κ-carrageenan) as a carrier for lipase immobilization.

Bioenergy and Biofuel from Biowastes and Biomass

This book presents new insights into the development of different aspects of petroleum science and engineering. The book contains 19 chapters divided into two main sections: (i) Exploration and Production and (ii) Environmental Solutions. There are 11 chapters in the first section, and the focus is on the topics related to exploration and production of oil and gas, such as characterization of petroleum source rocks, drilling technology, characterization of reservoir fluids, and enhanced oil recovery. In the second section, the special emphasis is on waste technologies and environmental cleanup in the downstream sector. The book written by numerous prominent scholars clearly shows the necessity of the multidisciplinary approach to sustainable development in the petroleum industry and stresses the most updated topics such as EOR and environmental cleanup of fossil fuel wastes.

Food Waste to Valuable Resources

This book is dedicated to the reuse of waste and residues from the agricultural sector. Plant residues, as well as animal manure and residues from animal breeding, contain useful elements that can be processed for production of fertilizers, compost for soil recultivation, and biofuels. The emerging energy and resources crisis calls for development of sustainable reuse of waste and residues.
This book contains eight chapters divided into four sections. The first section contains the introductory chapter from the editor. The second section is related to the preparation of fertilizers and compost for soil amelioration from agricultural residues and waste water. The third section considers the use of agricultural waste for solid biofuels and biogas. The fourth section discusses sustainability and risk assessment related to the use of agricultural waste and residues.

Production of biodiesel using lipase encapsulated in κ-carrageenan

This book presents an analysis of the results of studies of motor fuels ageing, conducted in laboratory and model conditions, in terms of building a system operating on-line, allowing continuous assessment of the operational usability of gasoline and diesel fuels, including those containing the addition of ethanol and FAME, respectively. This research was carried out in the framework of the project: "A system for the continuous control of the degree and rate of the liquid fuels ageing process during storage, which received co-funding from the European Regional Development Fund under the Operational Programme "Innovative Economy". The book presents an evaluation of the impact of fuel production processes on its stability and an analysis of changes in normative parameters of fuels during their storage and use. The book presents also the results of tests on the corrosive effects of fuels during storage processes. This project was co-financed by the European Regional Development Fund under the Operational Programme "Innovative Economy".

The Biodiesel Handbook

This book offers the current state of knowledge in the field of biofuels, presented by selected research centers from around the world. Biogas from waste production process and areas of application of biomethane were characterized. Also, possibilities of applications of wastes from fruit bunch of oil palm tree and high biomass/bagasse from sorghum and Bermuda grass for second-generation bioethanol were presented. Processes and mechanisms of biodiesel production, including the review of catalytic transesterification process, and careful analysis of kinetics, including bioreactor system for algae breeding, were widely analyzed. Problem of emissivity of NOx from engines fueled by B20 fuel was characterized. The closing chapters deal with the assessment of the potential of biofuels in Turkey, the components of refinery systems for production of biodegradable plastics from biomass. Also, a chapter concerning the environmental conditions of synthesis gas production as a universal raw material for the production of alternative fuels was also added.

Advances in Biodiesel Production

Food Waste to Valuable Resources: Applications and Management compiles current information pertaining to food waste, placing particular emphasis on the themes of food waste management, biorefineries, valuable specialty products and technoeconomic analysis. Following its introduction, this book explores new valuable resource technologies, the bioeconomy, the technoeconomical evaluation
Renewable Fuel Standard

According to the UN's Food & Agricultural Organization (FAO), one third of food produced globally for human consumption (nearly 1.3 billion tons) is lost annually. Food waste has often been incinerated with other combustible municipal wastes for possible recovery of heat or other forms of energy, however, incineration is not cost-effective, and can cause air pollution. Due to its organics- and nutrient-rich nature, food waste could be viewed as a useful resource for production of high-value platform chemicals through fermentation. This book examines the bioconversion of food wastes to energy and the recent developments in ethanol, hydrogen, methane, and biodiesel production from food wastes.

Handbook of Biofuels Production

The edited volume presents the progress of first and second generation biofuel production technology in selected countries. Possibility of producing alternative fuels containing biocomponents and selected research methods of biofuels exploitation characteristics (also aviation fuels) was characterized. The book shows also some aspects of the environmental impact of the production and biofuels using, and describes perspectives of biofuel production technology development. It provides the review of biorefinery processes with a particular focus on pretreatment methods of selected primary and secondary raw materials. The discussion includes also a possibility of sustainable development of presented advanced biorefinery processes.

Biofuels from Food Waste

Alternative and renewable energy sources already play a very decisive role in the development of human society, helping to fulfill increasing energy demands from both industrialized and underdeveloped countries, as well as economic needs, which must comply with a decarbonized economy, decreasing the energy impact on the global environment. Among these alternative energy sources, fuels such as biodiesel, methanol, and methane are good examples of how the previous design can be achieved, as these fuels can be obtained from renewable sources, used in applications such as transportation systems, electricity generation, fuel conversion, and even for electricity storage, with reduced impact on air emissions. This Special Issue includes papers on new and innovative technical developments or approaches, reviews, case studies, as well as assessment, papers from different
disciplines, which are relevant to the optimization of biodiesel, methane/methanol production systems, simultaneously resulting in air quality improvement.

Recent Insights in Petroleum Science and Engineering

The second edition of this invaluable handbook covers converting vegetable oils, animal fats, and used oils into biodiesel fuel. The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental impacts, as well as the status of the biodiesel industry worldwide. Incorporates the major research and other developments in the world of biodiesel in a comprehensive and practical format. Includes reference materials and tables on biodiesel standards, unit conversions, and technical details in four appendices. Presents details on other uses of biodiesel and other alternative diesel fuels from oils and fats.

Bioprocessing for Biomolecules Production

Frontiers in Bioenergy and Biofuels presents an authoritative and comprehensive overview of the possibilities for production and use of bioenergy, biofuels, and coproducts. Issues related to environment, food, and energy present serious challenges to the success and stability of nations. The challenge to provide energy to a rapidly increasing global population has made it imperative to find new technological routes to increase production of energy while also considering the biosphere's ability to regenerate resources. The bioenergy and biofuels are resources that may provide solutions to these critical challenges. Divided into 25 discreet parts, the book covers topics on characterization, production, and uses of bioenergy, biofuels, and coproducts. Frontiers in Bioenergy and Biofuels provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the energy field.